
How to Create a Java SOAP Client

Introduction ... 1

SOAP and Web Services .. 1

Axis .. 1

DOM Messages ... 1

Marshaled Messages .. 2

Processing the Response .. 2

Choosing Between DOM-style and Marshaling-style ... 2

Setting Up the Java Samples .. 3

About the Libraries... 6

The Axis DOM Client Sample ... 6

Running the Sample DOM Client .. 7

What Does This Code Do?... 8

Creating an Axis Marshaling Client .. 9

Running WSDL2Java ... 9

Running the Sample Marshaling Client ... 10

Sources of Information .. 11

Spreadsheet Applications... 11

Apache Axis.. 11

JDOM... 11

POI-HSSF.. 11

Glossary .. 12

How to Create a Java SOAP Client

Introduction

This article describes how to create a SOAP1 Client using Java and the Axis Java libraries. Axis is an
Apache project that provides Web Services libraries.

The article includes two samples: a “DOM-style” client that sends and receives DOM2 objects, and a
“marshaling-style” client that uses marshaled objects. The DOM example also illustrates how to write
data to an Excel spreadsheet. (DOM and marshalling are described below.)

The article is a simple “how-to” – it explains the steps needed to send and receive SOAP messages. The
article does not explain what’s going on behind the scenes; for in-depth information please see the
“Sources of Information” section at the end of the article.

The reader should have basic understanding of XML and know how to write and run a Java program.

SOAP and Web Services

SOAP is a standard for sending and receiving documents to a Web Service. A Web Service is a server
that can read such messages, process their data, and send responses.

A Web Service is analogous to a Web Application. Web Applications receive requests from a Web
Browser, such as Internet Explorer, and send back HTML documents in response. In this case, the client
application is the Web Browser; it is responsible for formatting the user request, sending it to the server,
and receiving and interpreting the response. Web Services clients go through the same cycle of creating a
request, sending it to the server, and receiving and processing the response. In this case, the response is
simply an XML file, whose contents can be processed as needed by the client.

A Web Services Description Language (WSDL) file fully describes how to use a Web Service. In other
words, the WSDL is the public API for a Web Service—it describes the operations and messages
available to the client application. There are open source Java utilities that generate client applications
based on a WSDL. In other words, one can automatically generate stubbed-out applications that take care
of sending SOAP message data provided by the programmer, and returning the server response. (There
are also .NET tools that generate client applications.)

Axis

Axis is the Apache Software Foundation’s third generation SOAP framework. Using Axis one can create
server and client applications. Axis allows the programmer to create two types of client: a client that
sends and receives DOM objects, or a client that reads marshaled objects.

DOM Messages

DOM stands for Document Object Model: a Java API for processing XML trees. DOM is published as a
set of interfaces by the World Wide Web Consortium (W3C). There are other libraries that implement
DOM and allow the programmer to create or inspect XML trees from Java; these libraries are provided

1 Simple Object Access Protocol

2 Document Object Model

 1

How to Create a Java SOAP Client

by Sun Microsystems, and by a variety of open source projects. DOM is considered the standard
interface: most other XML APIs include methods for translating their format to and from DOM.

To send a DOM XML tree, one can either construct the tree under program control, or read the XML
from a file. The DOM example provided in this article reads the XML from a file following this
processing:

1. Create a DOM object from XML stored in a file
2. Send the DOM to the SOAP Server
3. Receive the DOM response
4. Export response data to an Excel spreadsheet

Marshaled Messages

Marshaling is the process of transforming a stream of data into an object. Axis can automatically create
classes that correspond to the request and response messages given in the WSDL. In other words, Axis
will automatically translate object-based request data into XML, and will translate the response XML
back into objects.

Axis includes tools that automatically generate a set of “bean” classes corresponding to the WSDL for
the Web Service. The bean classes are simple classes that have “get” and “set” methods corresponding
the elements defined in the WSDL. Axis also generates methods that call the individual services defined
in the WSDL. These tools make it easy to call services using standard Java techniques.

In the marshaling example, you will first uses Axis tools to automatically generate beans classes and
service methods. The provided sample client program uses the generated classes following this
processing:

1. Call a service method passing data as a parameter
2. Receive the response as a bean
3. At this point the program is free to process the bean object as needed.

Processing the Response

Whether using DOM or marshaled messages, the SOAP response can be processed under program
control. Examples include using key data in the response to read or write data to a database, or writing
data to a file for later processing.

The DOM client example writes response data to an Excel Spreadsheet file (XSL) using classes from the
open source project POI-HSSF (http://jakarta.apache.org/poi/).

Choosing Between DOM-style and Marshaling-style

Use a DOM-style service when you need to process XML, or if you need to provide the data to another
process that requires XML. For example, you would choose DOM-style if you need to transform the
XML using XSLT.

Use a marshaling-style client when you need to process the data from within a Java application. Since Axis
provides the data as Java bean objects, you have the power of the Java language to process the data. For
example, the JDBC library can be used to write the data to a database.

 2

How to Create a Java SOAP Client

What Information Are We Trying to Get?

The eRETR server sends data in response to requests coming from filers, county officials, assessors, and
DOR staff. In this article we’ll use the service that sends RETR data for a range of dates. For example,
the property lister may ask to receive a list of RETRs filed during the past week.

Request Data

To get the data for a date range, the request must specify the county, a start date, and an end date. For
example, the request may specify county 13 (Dane) for the date range December 1, 2004 through
December 31, 2004.

The Web service is a computer application, so needs the data in a specific form. Web services use XML,
and the XML format is described in the service’s WSDL. For the eRETR service, the request must be
formatted like this:
1 <ns0: getRecordedERETRByDateRangexmlns:ns0="urn:model.retr.dor">
2 <countyID>13</countyID>
3 <dates>
4 <startDate>2004-12-01</startDate>
5 <endDate>2004-12-31</endDate>
6 </dates>
7 </ns0: getRecordedERETRByDateRange>

Figure 1. Request XML — Return RETRs for a Date Range

In figure 1, our request to get data for county 13 is found in line 2 with the
“getRecordedERETRByDateRange” tag. The surrounding “countyID” tag identifies the data. The date
range is found in lines 3 to 6. The “ns0” in line 1 is a reference to where this XML structure is defined.

This entire request is embedded in a “SOAP Envelope”–this is the standard structure expected by a
SOAP service:
<?xml version="1.0" encoding="UTF-8" ?>
 <SOAP-ENV:Envelope xmlns:SOAP
 ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <SOAP-ENV:Body>
 <ns0:getRecordedERETRByDocumentIDRange xmlns:ns0="urn:model.retr.dor">
 <countyID>13</countyID>
 <docIDs>
 <startNumber>2654</startNumber>
 <endNumber>2656</endNumber>
 </docIDs>
 </ns0:getRecordedERETRByDocumentIDRange>
 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>

Figure 2. A request SOAP Envelope

Response Data

In response to this request the server returns all the returns for that county for the date range. The
response is embedded in a SOAP Envelope.

 3

How to Create a Java SOAP Client

<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <getRecordedERETRByDocumentIDRangeResponse xmlns="urn:model.retr.dor">
 <result xmlns="">
 <item>
 <Grantor>...</Grantor>
 <Grantee>...</Grantee>
 <PropertyTransferred >...</PropertyTransferred >
 <FeeComputation>...</FeeComputation>
 <PropertyTransferred >...</PropertyTransferred >
 <RecordingInformation>
 <DocumentNumber>2654</DocumentNumber>
 <CountyCode>13</CountyCode>
 </RecordingInformation>
 ...
 </item>
 <item>
 <Grantor>...</Grantor>
 <Grantee>...</Grantee>
 <PropertyTransferred >...</PropertyTransferred >
 <FeeComputation>...</FeeComputation>
 <PropertyTransferred >...</PropertyTransferred >
 <RecordingInformation>
 <DocumentNumber>2655</DocumentNumber>
 <CountyCode>13</CountyCode>
 </RecordingInformation>
 ...
 </item>
 </result>
 </getRecordedERETRByDateRangeResponse>
 </soapenv:Body>
 </soapenv:Envelope>

Figure 3. A response SOAP Envelope

In this example, the data for two RETRs was sent in response. (An eRETR is lengthy; therefore, this
example omits some detail from the response.)

Setting Up the Java Samples

All code and required libraries are in a single ZIP file found at http://www.dor.state.wi.us/eretr/.
Download this file and unzip it to a convenient location on your local file system.

 4

How to Create a Java SOAP Client

F

I
s
A

A

T
b
r

SOAPMessageBodies

Directory containing XML files containing sample SOAP message
bodies.

bin/

Directory where the compile batch files write Java binaries for the three
Java classes found in src/.

lib/

Directory of JAR files acquired from the Axis, JDOM, and POI projects.

src/
Java source directory. There are three Java source files:

• sample.client.dom.Client.java
• sample.client.marshaled.Client.java
• sample.xlswriter.NodeWriter.java

CompileDOMSample.bat

A batch file that compiles sample.client.dom.Client.java and
sample.xlswriter.NodeWriter.java

CompileMarshalSample.bat

A batch file that compiles sample.client.marshaled.Client.java

RunSampleClientDOM.bat

A batch file that runs the sample DOM client.

RunSampleClientMarshaling.bat

A batch file that runs the sample marshaling client.

RunWSDL2Java.bat

A batch file that runs the Axis WSDL2Java utility.
igure 4. Contents of the Java sample ZIP file

mportant: All JAR files in lib must be in your Java CLASSPATH. Also note that
ample.client.marshaled.Client will not compile until you follow the steps in section “Creating an
xis Marshaling Client” below. This will not affect your ability to run the DOM example.

bout the Batch Files

he batch files are written assuming your working directory is the location of the file. In other words, the
atch files assume you have used DOS commands to navigate to the location of the batch files and are
unning them from there.

5

How to Create a Java SOAP Client

About the Libraries

The sample contains all the libraries you’ll need. Three sets of libraries are used: those required by Axis
JDOM and POI-HSSF.

The Axis libraries are available at: http://ws.apache.org/axis/. As of November 22, 2004, the current
release of Axis is 1.2 RC1. Axis is distributed as a single compressed file. The Axis 1.2 RC1 library files
are:

• axis.jar
• axis-ant.jar
• commons-discovery.jar
• commons-logging.jar
• jaxrpc.jar
• log4j-1.2.8.jar
• saaj.jar
• wsdl4j.jar
• xmlParserAPIs.jar

JDOM (http://jdom.org/) is an open source project that provides Java classes for manipulating XML.
The JDOM binaries are found at http://jdom.org/downloads/. As of November 30, 2004, the current
release of JDOM is 1.0. JDOM is distributed as a single compressed file. The JDOM 1.0 library files are:

• ant.jar
• jaxen-core.jar
• jaxen-jdom.jar
• jdom.jar
• saxpath.jar
• xalan.jar
• xerces.jar
• xml-apis.jar

The POI binaries are found at http://jakarta.apache.org/poi/. As of November 30, 2004, the current
release of POI is 2.5.1. POI is distributed as a single compressed file named poi-bin-2.5.1-
final-20040804.zip. The POI 2.5.1 library file is:

• poi-2.5.1-final-20040804.jar

The Axis DOM Client Sample

The sample Axis DOM client is sample.client.dom.SendSpecifiedBody. This is a Java application
that reads three parameters:

• The SOAP Server URL
• The full path name of the XML file containing the SOAP message body
• The full path name of the Excel spreadsheet file that will contain response data

If you inspect the files in directory SOAPMessageBodies/ you’ll see that they contain message bodies for
some of the services specified in the WSDL. Feel free to copy and edit these to try out other services or
to see how the services respond when different data is used.

 6

How to Create a Java SOAP Client

Compiling the Sample DOM Client

To compile the DOM sample run CompileDOMSample.bat. The batch file assumes your working
directory is set to the location of the batch file. Running the batch file should result in the creation of
bin/client/sample/dom/Client.class and bin/client/xlswriter/NodeWriter.class.

Running the Sample DOM Client

The batch RunSampleClientDOM.bat file runs the main method in
sample.client.dom.SendSpecifiedBody passing these values:

• The SOAP server URL is set to the name of the server,
• The XML file is set to /SOAPMessageBodies/GetRetrList.xml
• The output XLS files is set to C:\temp.xls

Running the batch file should result in the creation of the spreadsheet.

The sample uses class sample.xlswrite.NodeWriter to write DOM data to an Excel spreadsheet.
NodeWriter uses POI-HSSF to create the spreadsheet. The topic of using POI-HSSF is beyond the
scope of this article. However, feel free to browse the source of sample.xlswrite.NodeWriter.
Information on POI can be found in the “Sources of Information” section at the end of this article.

 7

How to Create a Java SOAP Client

The source file contains two methods: main, and callService. Method callService does all the work.
public static void main(String[] args) throws Exception {
 callService(args[0], args[1], args[2]);
}

public static void callService(String serviceURL,
 String soapBodyFileName, String fileName) throws Exception {

 // 1. Create an array of SOAPBodyElements, one array element for
 // each element in the input document.
 // 2. Call the service passing the array. The response is a vector
 // of SOAPBodyElements.
 // 3. Print the leaf values of each returned element to an Excel
 // spreadsheet.

 // 1.
 InputStream inputStream = new FileInputStream(soapBodyFileName);
 Document inputDocument = XMLUtils.newDocument(inputStream);
 NodeList nodeList = inputDocument.getChildNodes();
 SOAPBodyElement[] input = new SOAPBodyElement[nodeList.getLength()];
 for (int i = 0; i < nodeList.getLength(); i++) {
 Element anElement = (Element) nodeList.item(i);
 input[i] = new SOAPBodyElement(anElement);
 }
 // 2.
 Service service = new Service();
 Call call = (Call) service.createCall();
 call.setTargetEndpointAddress(serviceURL);
 Vector response = (Vector) call.invoke(input);
 int f = 0; // File name index
 for (Iterator it = response.iterator(); it.hasNext();) {
 MessageElement anElement = (MessageElement) it.next();
 // 3.
 Element domElement = anElement.getAsDOM();
 // Sorry about the ugly expression to add _# to each file name :(
 String fName = fileName + (f++==0?"":"_"+f);
 // Use xpath to get the "result/item" elements. This matches what
 // our example returns; change the xpath if you change examples.
 NodeList nl = XPathAPI.selectNodeList(domElement, "//result/item");
 NodeWriter.writeNodeLeaves(fName+".xls", nl);
 FileOutputStream fileOut = new FileOutputStream(fName+".xml");
 XMLUtils.PrettyElementToStream(domElement, fileOut);
 }
}

Figure 5. The two methods in sample.client.dom.SendSpecifiedBody

What Does This Code Do?

Section 1 reads the SOAP message body from the specified XML file and uses it to create a DOM
object. The code then initializes an array of org.apache.axis.message.SOAPBodyElement objects.
Each array element corresponds to an element within the sample message. Axis will place these elements
into the message it sends to the server.

Section 2 starts by getting an org.apache.axis.clientService object. This object encapsulates a
Web Service. The code then gets a Call object from the service and has the Call reference the server
name passed into the routine. The Call object’s invoke method has Axis place the elements in a SOAP
message, pass them to the server, and receive a response. (RETR response messages always contain a
single response element, which in turn may contain child elements.)

 8

How to Create a Java SOAP Client

In section 3, the response is translated back into a DOM object, and the NodeWriter class called to
write the result to an Excel spreadsheet. The NodeWriter source is included with the sample. It uses
POI-HSSF classes to create the Excel spreadsheet file. Note that section 3 passes specified elements to
NoteWriter. These are specified in an XPath expression that matches what’s being returned in this
example. If you were to use a different SOAP request, you would change the XPath expression to select
the elements you want to export to Excel.

Creating an Axis Marshaling Client

To use the Axis marshaling features you need to run an Axis utility named WSDL2Java. This utility
generates bean classes based on the Web Service WSDL, and generates a method for each service.

Running WSDL2Java

The eRETR samples include a batch file that runs WSDL2Java.
@ECHO OFF
SET CP=.
SET CP=%CP%;lib/axis.jar
SET CP=%CP%;lib/axis-ant.jar
SET CP=%CP%;lib/commons-discovery.jar
SET CP=%CP%;lib/commons-logging.jar
SET CP=%CP%;lib/jaxrpc.jar
SET CP=%CP%;lib/log4j-1.2.8.jar
SET CP=%CP%;lib/saaj.jar
SET CP=%CP%;lib/wsdl4j.jar
SET CP=%CP%;lib/xmlParserAPIs.jar

SET WSDL=http://rvpc3870:9080/RetrWebServices/services/RetrServices2?wsdl
@ECHO ON

java -cp %CP% org.apache.axis.wsdl.WSDL2Java --verbose --output src --
noWrapped %WSDL%

Figure 6. The RunWSDL2Java.bat batch file

Note that the batch file passes the name of the Web Service WSDL to WSDL2Java. The WSDL contains
information needed by WSDL2Java, such as the service URL, available services and the structure of the
messages being used by the services.

Running the batch file results in WSDL2Java creating a package named for the service URL, a set of bean
classes corresponding to the message elements, and a “service” class with a set of methods that allow the
programmer to send and receive messages to the various services. Specifically, running
RunWSDL2Java.bat will cause WSDL2Java to generate these Java source files:

• Many “bean” classes corresponding to the message element types

• dor.retr.model.ERETRPort, which is an interface whose methods correspond to the
operations provided by the Web Service service (using the “operation” elements from the
WSDL)

• dor.retr.model.ERETRService, which is an interface that returns an ERETRPort
implementation.

• dor.retr.model.ERETRServiceLocator, which is the implementation of ERETRService
• dor.retr.model.ERETRPortSOAPBindingStub, which is the implementation of ERETRPort

 9

How to Create a Java SOAP Client

Compiling the Sample Marshaling Client

To compile the marshaling sample run CompileMarshalingSample.bat. The batch file assumes your
working directory is set to the location of the batch file. Running the batch file should result in the
creation of bin/client/sample/marshaling/Client.class.

Running the Sample Marshaling Client

The batch RunSampleClientMarshaling.bat file runs the main method of
client.sample.marshaling.Client. This class calls.
public static void main(String[] args)
 throws ServiceException, RemoteException {

 // Get the object that has the list of services.
 ERETRPort retrPort = new ERETRServiceLocator().geteRETRPort();

 // Call the service that retrieves a list of eRETRs. The parameters are
 // county ID, and DateRange--a start and end date. First set up the
 // parameters.
 String countyCode = "13";
 DateRange dateRange = new DateRange();
 Calendar c = new GregorianCalendar(2004, GregorianCalendar.DECEMBER, 1);
 dateRange.setStartDate(c.getTime());
 c = new GregorianCalendar(2004, GregorianCalendar.DECEMBER, 31);
 dateRange.setEndDate(c.getTime());

 // Now that the parameters are set up, call the service, get a
 // response, and print it.
 RecordedRETR[] retrArray =
 retrPort.getRecordsByDates(countyCode, dateRange).getItem();
 for (int i = 0; i < retrArray.length; i++) {
 RecordedRETR r = retrArray[i];
 System.out.println(r.getRecordingInformation().getDocumentNumber());
 }
}

Figure 7. The sample.client.marshaling.Client main method

What does this code do?

The code calls uses the ERETRServiceLocator() method geteRETRPort() to get an object that
implements ERETRPort; this object encapsulates the details of connecting to the server and translating
parameters sent as objects into the XML that is actually sent to the service.

The service expects complex data—a county code and a structured element type that stores start and end
dates—the service method parameters match those types. Specifically, getRecordsByDates expects the
county code to be passed as a String, and the start and end dates to be passed as a DateRange. The
DateRange type was automatically created by Axis when you ran WSDL2Java. Therefore, to call the
service the code stores the county code in a String and creates a DateRange object, and passes the objects
as parameters to the getRecordsByDates method. This method returns an element that contains an array
of eRETRs. Again—the return type of this method was determined by the information found in the
WSDL.

This code is differs from the DOM example because the generated classes encapsulate the format of the
request and response as bean objects, and hides the details of making the call to the server.

 10

How to Create a Java SOAP Client

Sources of Information

Spreadsheet Applications

Excel is not required to use XLS files. There are several spreadsheet products that also read XLS files:

• OpenOffice (an open source project sponsored by Sun Microsystems) includes a spreadsheet
application. See http://www.openoffice.org/ for details.

• Lotus 123 (IBM Corporation)
• Quatro (Corel Corporation)

Note that Microsoft Works (Microsoft Corporation) does not read XLS files.

Apache Axis

The Axis project home page is http://ws.apache.org/axis/.

The primary programming reference is the Axis User’s Guide, found at
http://ws.apache.org/axis/java/user-guide.html.

Ongoing discussions of Axis are found at the Axis Wiki, which is linked off of the general Apache Wiki
at http://wiki.apache.org/general.

A list of books and articles relating to Axis is found at http://ws.apache.org/axis/java/reading.html.

JDOM

The JDOM project home page is http://jdom.org/.

POI-HSSF

The POI project home page is http://jakarta.apache.org/poi/index.html.

The HSSF project home page is http://jakarta.apache.org/poi/hssf/index.html.

There is an article on POI-HSSF at IBM’s Developer Works:
http://www-106.ibm.com/developerworks/db2/library/techarticle/dm-0402bhogal/.

 11

How to Create a Java SOAP Client

Glossary

Apache Software Foundation

According to the Apache Software Foundation home page:
The Apache Software Foundation provides support for the Apache community of open-source software projects. The
Apache projects are characterized by a collaborative, consensus based development process, an open and pragmatic
software license, and a desire to create high quality software that leads the way in its field. We consider ourselves not
simply a group of projects sharing a server, but rather a community of developers and users.

DOM
Document Object Model. An open source API for processing XML trees as objects.

Jakarta Project
According the Jakarta Project home page:
The Jakarta Project creates and maintains open source solutions on the Java platform for distribution to the public at no charge.

JDOM
Java Document Object Model. JDOM is an open source set of Java classes that process XML and
DOM.

Marshaling
An informal term referring to the translation of an object to and from some other format. Typically,
the object is transformed to and from an XML representation of the object. In general, marshal is
synonymous to serialize.

Open source
Open source refers to application software whose source is made freely available. Open source
software is usually free.

POI-HSSF

Poor Obfuscation Implementation, Horrible Spread Sheet Format. POI is an Apache-Jakarta project
whose family of Java classes allow the programmer to process some Microsoft Office file formats.

SOAP

Simple Object Access Protocol. SOAP is a standard format for sending and receiving Web Services
messages. In common usage, SOAP is synonymous with Web Services.

 12

How to Create a Java SOAP Client

SOAP Message
A SOAP message has the format:
<Envelope>
 <Header>
 </Header>
 <Body>
 </Body>
</Envelope>
Data is sent in the message body. (Meta-data is sent in the header.)

Web Service
A server that can receives XML-based requests and sends XML-based responses.
A Web Service is analogous to a Web Application. Web Applications receive requests from a Web
browser and send HTML responses. The user is a person using a browser such as Internet Explorer.
Similarly, a Web Service receives requests and sends responses. However, in this case, the “user” is a
computer application.

WSDL
Web Services Description Language. A WSDL fully describes a Web Service. For example, it names
the service URL, the services (operations) provided, and the format of the request and response XML.

XML
Extensible Markup Language. An XML file is a file containing tags and associated data.
Historically, XML came about is a rigorous version of HTML. HTML is inconsistent in its use of tags.
For example, not all HTML tags must be terminated. This led to the need for a well-formed markup
format: XML.

XPath
XML Path Language (XPath) is a language for addressing parts of an XML document.

 13

